
Transformation Systems at NASA Ames

Wray Buntine

Bernd Fischer

Klaus Havelund

Michael Lowry

Tom Pressburger

Steve Roach

Peter Robinson

Jeffrey Van Baalen

Univ of Calif. Berk(;ley

NASA Ames/RIACS

NASA Ames/RECOM

NASA Ames

NASA Ames/RECOM

Adams State College

NASA Ames/RECOM

Univ. Wyoming

wray_(?ct_'cs,l)_r k_dey._d il

fischOpt olemy.ar(:, nasa.gov

havehmd_ptolemy.arc.nasa.gov

lowry@ ptolemy, arc. nasa. gov

ttp@ptolemy.arc, nasa.gov
smroach@adams.edu

robinson_ptolemy.arc.nasa.gov
jvb@uwyo.edu

ABSTRACT

In this paper, we describe the experiences of the Auto-

mated Software Engineering Group at the NASA Ames

Research Center in the development and application

of three different transformation systems. The sys-

tems span the entire technology range, from deduc-

tive synthesis, to logic-based transformation, to almost

compiler-like source-to-source transformation. These

systems also span a range of NASA applications, includ-

ing solving solar system geometry problems, generat-

ing data analysis software, and analyzing multithreaded
Java code.

Keywords

deductive synthesis, source-to-source transformation,

rewriting, compilation

1 INTRODUCTION

In this paper, we describe the experiences of the Auto-

mated Software Engineering Group at the NASA Ames

Research Center in the development and application of

three different transformation systems. The systems
span the entire technology range from deductive synthe-

sis, to logic-based transformation, to almost compiler-
like source-to-source transformation.

Deductive synthesis systems [11] have the same goal

as "classical" (i.e., non-deductive) transformation sys-

tems, namely the (mostly automatic) translation of
non-executable specifications into executable programs.

They use, however, a different technology. The specifi-

cation is recast as a theorem in the first-order predicate

calculus and submitted to an automatic theorem prover.

The resulting program is then extracted from the proof
which must thus be constructive.

Deductive synthesis is not an alternative to but an in-

stance of the general transformational software devel-

opment paradigm. This is a consequence of the dual

nature of proofs. On the one hand, a proof, especially

a tableau-st_le proof [12], is a stepwise transformation
of a theorem into axioms. On the other hand, it can

be considered as a program, due to the Curry-Howard

isomorphism [7].

The main difference between the classical transforma-

tion and deductive synthesis approaches is the question
of control, i.e., who is in charge to control the trans-

formation/proof process? In a classicM transformation
system, the system designer is in charge. Usually, the

transformation process is constrained by organizing the

set of transforms into different, fixed, mutually distinct

layers; these layers are executed in a fixed order and
transforms in later layers are generally more detailed

and more localized. In a purely deductive system, the

theorem prover is in charge. The proof process is only

restricted by properties of the applied calculus; essen-

tially, every transform can be applied at every possible

locale, at any time. Hence, a transformation system

may in turn also be considered to be an operationaliza-

tion of a deductive synthesis system.

A syntax-directed source-to-source transformation sys-

tem (in other words, a compiler) can be considered

as the ultimate operationalization of a transformation

system: the search for applicable transformations (i.e.,

transforms and locales) is completely eliminated, either

by differentiation of the syntax which renders the choice
of locales irrelevant, or by completion of the set of trans-
forms which renders the choice of transforms irrelevant.

The application of transformational techniques at
NASA is driven by the need to achieve goals in soft-

ware development: (i) lowering the development cost,

(ii) lowering the required expertise, and (iii) validating

and verifying the developed system. These goals, how-

ever, also apply to the development of transformation

systems.

The only variable cost in the development of a trans-

formation system is the operationalization step. Since

deductive synthesis systems need in principle no explicit
operationalization, they are p_ime candidates, However,

non-operationalizeddeductivesystems,hit the com-
plexityl)arrierinherentto tiw,oremprovingbeforethey
scale-upto non-toyproblems.Wehavethusdeveloped
automatedtechniqueswhichfacilitatea deductiveop-
erationalizationandat thesametimekeepthelevelof
requiredexpertisewithinreasonablebounds.
2 AMPHION
Amphion[9]implementssynthesis-basedreuseoflibrary
subroutines.It translatesa problemspecificationex-
pressedin logicintoa Fortranprogramthatsolvesthe
problem.TheFortranprogramat presentisastraight-
line programthat makescallsto JPL'sNAIF library
subroutines,whicharein the domainof solarsystem
geometry.Amphion/NAIFdealswith problemspecifi-
cationsof about30lines,generatingabout100linesof
Fortrancode.In a smallerexperiment,Amphionhas
beenappliedto airplanegriddingsubroutinesusedin
ComputationalFluidDynamics.Amphion'stranslation
processcomprisesthreemainphases.

1. Rewritethe abstractspecificationcontainingab-
stractoperationsto acanonicalsetofabstractop-
erations(e.g. angle-between-two-planesto angle-
between-the-two-normal-vectors)

2. Usedeductivesynthesisto solvetheabstractspeci-
fication;thisyieldsatermoverconcreteoperators.

3. Translatetheconcretetermto a levelisomorphic
to Fortran,whenceit isprintedout.

ThefirsttwophasesareperformedtogetherbySNARK,
aresolutiontheoremproverdevelopedat SRIbyMark
Stickel[13].

The theorems used in deductive synthesis in the second

phase above capture three kinds of facts.

n,_(x,F,_(x)) (1)

F,_(Ax(c)) = A2(fc(c)) (2)

Al(c) = A2(convertla(c)) (3)

The first expresses solutions to constraints (1); e.g., that

Fa(c) is a solution for y to Ra(c,y). The second are ho-
momorphisms that implement an abstract operator Fa

as a concrete operator Fc (2). The third are conversion
axioms that convert a concrete value from one represen-

tation of an abstract value into another representation

(3).

In SNARK, control of the deductive process is ef-

fected by specifying a search strategy (we chose set-of-

support), Recursive Path Orderings (RPO), and a func-
tion that orders the goal clauses on the agenda. The

RPO specifies whether an equation can be used as a
rewrite rule, and whether a paramodulation (an equal-

ity inference rule used in resolution theorem provers)

should occur. However, AmI)hion loses completeness

because it uses RP()s together with the set-of-support

strategy. This means that it might, in theory, fail to

synthesize a program for a given specification; in prac-

tice, however, this has not been a problem.

The deductive process generally proceeds in two steps:

initially, the constraints are solved abstractly in terms of

abstract operators using the first sort of fact; then con-

crete operators are found that implement the abstract

operators using the second sort of facts oriented left-to-

right and the third sort of facts acting as glue between
the second sort of facts.

Concocting an agenda ordering function that ordered

the tasks as .described above was difficult, requiring rea-

soning about the theorem proving process and the ax-

ioms. Meta-Amphion [10, 15] was invented to deal au-

tomatically with this problem. It finds subtheories that

can be replaced by decision (satisfiability) procedures;

it can be thought of as a theory compiler. The resulting

system can replace several non-deterministic inference

steps by a single deterministic comput.ation step. This

puts less reliance on the agenda ordering function.

This makes it feasible for a domain expert (i.e., someone

familiar with the subroutine library but not automated

deduction) to write such axioms as (1,2,3). It is a design

goal of Amphion that the people developing the library
can extend Amphion to make the library more accessible

to customers. The reason Amphion is successful is that,

due to the use of deductive synthesis, each axiom can be
reasoned about in isolation. A user interface enabling a

domain expert to enter axioms is being built now. An

RPO that orients an equation like (2) left-to-right can

be generated automatically.

For the automated reasoning about the correctness of

axioms, a type checker was written that applied to the
axioms and rewrite rules. We also experimented with

running a completion procedure, but not thoroughly:

we got lost trying to orient the equalities with which it

came up.

Translation Phase

The translation phase applies several passes of

correctness-preserving transformations to the answer

term returned by SNARK. The following tasks are ac-

complished: variables are introduced for subterms (this

is required to pass data from one Fortran CALL state-

ment to the next); parameters and dummy parameters

are correctly assigned to subroutines that return mul-

tiple values; and parameter passing conventions used

by NAIF are implemented. The reason for the multi-
pass architecture is separation of concerns. Because it
is written as a transformation system, rather than a

monolithic piece of code, we hope that it will be able
to handle extensions, such as conditional statements;

however,thishasnotbeent(_sted.

SNARKusesspecial-purposeformuladatastructures;
the [atte,"transformationpha.sesuseLISPlists. The
latter phaseswerefirst writtenusingSoftwareRefin-
ery,but werelatertransliteratedintoLISP.TheRefine
transformationsbecameeitherLISPfunctionsif they
werecomplicated,e.g.ruleschemas,or rewriterulesif
theyweresimpleenough.If a transformationiscompli-
cated,it isnotanalyzable,e.g.bythetypechecker.The
followingareinstancesof two rule schemas; the general
schemas cannot be expressed as simple rewrite rules.

(get-field 2 (tuple x y z)) --> y

(let ((x El) ...) bdy)

(letp ((x . ..) suchthat (and (= x El) ...)) i)dy)

Tracing

Tracing information was added to SNARK and the

translation process to record where each rewrite and in-

ference ruleapplied If61.This isused to add commen_s
tocode as to which abstractvariablea concretevariable

corresponds.

Abstractly,an explanation isa set of connectionsbe-

tween the Fortran program and the problem specifica-

tionor partsofthe domain theory.The explanationgen-

erationprocessstartswith the Fortran abstractsyntax

term, consideredto be the root ofa derivationtree,and

tracesbackwards through the derivationto the specifi-

cation and domain theory,considered to be the leaves

of the derivationtree. Both the proof,resultingin an

applicativeanswer term, and the traceof the program

transformations,resultingin a Fortran abstractsyntax

tree,are part of thisderivationtree.

More formally,a derivationisa directedacyclicgraph

whose nodes are derivationand transformation steps

and whose arcs encode the "derived from" relation.

Each derivation step is a triple (F, T, A), where A is an

inference rule application, and F and T are the result-

ing formula and answer term, respectively. Each appli-

cation of a rule specifies: the inference rule _hat was ap-

plied (one of transformation, demodulation, paramod-

ulation, or resolution); the input formulae Fl,...,Fn;
and the locations (path in the formulae) of the subterms

to which the rule was applied.

An explanation is an equality connecting locations in
the Fortran abstract syntax term to constructs in the

specification and domain theory, from which it was de-

rived. Such an equality is computed in two steps. First,

explanation equalities of each step of the derivation are

extracted. Explanation equalities are equalities between
locations in a formula F and locations in the parent for-

mulae Ft , Fn in the derivation. Second, an equality

is computed between the relevant location in the For-

tran abstract synt;_x term and locations in the leaves of

the derivation.

3 PROBABILISTIC NETWORKS

The motivation for this work was to enable the quick

development of small and efficient data analyzers that

could be run on a Martian rover that uses a spectrome-

ter to classify minerals. The relevant type of data analy-

sis here is parameter estimation, where, given data that

is drawn from a statistical model (i.e., a parameterized

distribution), the task is to find the parameter values
that maximize some measure of fitness of the data to

the model.

For such applications, experienced statisticians itera-
tively experi_nent with different statistical models of the

domain to be analyzed and with different algorithms to

be employed to do the analysis. However, the implemen-
talon of--even a prototype---data analysis program for

each model is too expensive, which hinders the experi-

mentation with different models and algorithms. More-

over, turning these prototypes into realistic, space- and
time-efficient code introduces another bottleneck. Thus,

a program transformation system which translates a sta-

tistical model into an efficient program (as suggested in

[1]), would be valuable tool for the statistical data anal-

ysis domain.

We are currently developing the system PN (Probabilis-

tic Networks) [2] which is intended to be such a tool. It

uses a specification language which is based on Bayesian

networks. This framework provides a way of deriving

the full joint probability over variables, and various con-

ditional and marginal probabilities as required to syn-

thesize the analysis programs. Bayesian networks axe a

standard notation in the data analysis domain and have

also been adopted for other successful data analysis sys-

tems such as BUGS [14]. In the PN specification lan-
guage the variables involved in the problem are defined

together with their properties and inter-dependencies.

For example, a variable can be declared as a constant,
to depend deterministically on other variables, or to be

distributed according to a distribution parameterized by
other variables.

The PN system generates pseudocode as an intermedi-

ate stage before translation to Java. The pseudocode
may embody efficient algorithm templates (e.g., clus-

tering algorithms) but may also call routines for doing

numerical optimization.

The program synthesis process is triggered by a param-
eter estimation problem statement which asks to find

the values of some of the variables that optimize a given

probability given data for other variables. The synthe-

sis process itself transforms the network and the prob-
lem statement. Subproblems are generated based on

theorems about how the network can be decomposed.

3

Someof the probh.mlscanbe solvedin closedform,
_omebycallingnun>'ricaloptimizationorsolutionsub-
routines,Ant[¢,omebyusinggeneralpurposestatistical
algorithms;tile transformsassociated with these prob-

terns return code fragments. These subproblems may

also involve probability expressions which can be sim-

plified based on further domain-specific theorems. Some

other subproblems require further, recursive decompo-
sition of the network: the associated transforms return

simpler (ne_:work, problem statement)-pairs.

All transformations are expressed as theorems in Horn-

clause logics; this facilitates reasoning about their cor-
rectness. For efficiency reasons, we use a Prolog-

interpreter as a deductive execution machine (i.e.,

metaprogram); each transform becomes a rule which

checks the preconditions of the underlying theorem and

builds up pseudocode as it decomposes the network and

problem specification.

The final phase, which we have not finished, is a trans-

formation from pseudocode to Java. Here, issues such

as numerical stability and optimization need to be ad-
dressed.

4 JAVA PATHFINDER

One of our goals is to apply and develop verification

tools based on model checkers, theorem provers, and

static analysis in general A verification tool typically

analyses a term in some language (a specification, a de-

sign or a concrete program) with the purpose of deciding
whether the term satisfies some given properties. This

provides a complementary and higher level of debugging

and V&V than traditionM testing methods. The ben-

efit becomes particularly apparent when dealing with

non-deterministic systems, for example concurrent and

distributed programs, where testing techniques typically

cannot control the scheduling of interleaved processes.

That is, using traditional testing, the successful run of

a particular test suite will not be convincing due to the
fact that the test run may have missed certain possible

interleavings of the involved processes. A verification
tool, such as a model checker, will typically explore all

possible interleavings.

Almost all existing verification tools, however, ana-

lyze terms in some special purpose language particu-
lar for that tool. We believe that verification tools will

be accepted and used by NASA programmers only if

they can analyze programs/designs/specifications writ-

ten in the languages already used by these program-
mers. Therefore we have started a general effort to

bridge the gap between frequently used languages and
these special purpose verification languages in order to

benefit from the analytic engines underneath the lat-

ter. In particular, we are developing a translator called

Java PathFinder (JPF) [4] from the Java programming

language to the Promela language of the Spin model
checker.

Spin [6] is a verification system that supports the design

and verification of finite state asynchronous process sys-

tems. Programs are formulated in Promela, which is a

simple multi-threaded programming language with non-

deterministic guarded commands. Processes communi-
cate either via shared variables or via message passing

through buffered channels. Properties to be verified are
stated as assertions in the program or as formulae in

the linear temporal logic LTL. The Spin model checker

can automatically determine whether a program satis-

fies a property, and in case the property does not hold,

it generates an error trace.

One of our efforts to formally verify a multi-threaded op-

erating system for the DEEP SPACE 1 spacecraft is doc-

umented in [3]. The operating system is implemented
in a multi-threaded version of Common LISP. The veri-

fication effort consisted of hand-translating parts of the

LISP code into the Promela language of Spin. A total

of 5 errors were identified, a very successful result. It

was, however, clear that hand-translating such amounts

of code is impractical, and this motivated the translator
described here.

The Source Language

The intended source language of the translation is Java

as a general purpose programming language, rather

than as a specialized World Wide Web applet program-

ming language. A significant subset of Java version 1.0

is currently supported by JPF: dynamic creation of ob-

jects with methods and data such as integers, booleans,

arrays and object references. Furthermore class inher-

itance, dynamically created threads and synchroniza-

tion primitives for modeling monitors (synchronized
statements, and the wait and notify methods), excep-

tions, thread interrupts, and most of the standard pro-

gramming language constructs such as assignment state-
ments, conditional statements and loops. However, the

translator is still a prototype and misses some features,

such as packages, overloading, method overriding, re-

cursion, strings, floating point numbers, static variables
and static methods. Finally, we do not translate the

predefined class library. A well-formedness predicate is

applied to the Java program before the translation to
determine whether it falls in the subset of translatable

programs.

A Java program to be translated will contain temporal

logic specifications stated as calls to special static meth-

ods (like "Verify. assert (alarm == false)") defined
in a predefined class called Verify. When translating

the Java program these calls will be translated into the

assertion language of Promela or into LTL formulae. By

defining the special Verify class and defining temporal

logic:operatorsasJava methods (with possibly empty

bodies sim'.e they mainly have importance for the trans-

lation) we avoi(t extending the .lava language with spec-
ification constructs.

The Translator

The translator is written using Moscow ML (for parsing)
and Common LISP for the translation. The result of the

parsing is an abstract syntax tree represented as a LISP

S-expression. A set of LISP macros using the object
oriented features of LISP have been defined to allow

pattern matching over this tree, since LISP does not

have pattern matching.

The translator is defined by recursive descent and pat-

tern matching over the tree, printing Promela code di-

rectly to an output file. Hence, the translation'does

not generate intermediate code - the translation is di-

rect, source to target in one go. The generated code

is, however, divided into C macro definitions and the

Promela code itself (Promela code is allowed to contain

calls of such macros, which will be expanded out). The

macros typically model Java kernel operations such as

applying synchronization locks on objects, throwing ex-

ceptions and handling object references. The generated

Promela code can therefore be regarded as belonging to

an enriched Promela, augmented with these kernel op-

erations, and the following macro expansion will then
result in lower level Promela code.

The translation functions all have access to the complete

abstract syntax tree in addition to the portion of the

tree they are respectively designed to transform. This

is in contrast to maintaining a symbol table that grows

as the tree is descended. Just keeping the tree around

seemed simpler than maintaining a nearly isomorphic

symbol table.

The translator does not keep a record of the applied

transformations (LISP functions). However, traceabil-

ity between the source Java code and the target Promela

code is essential when the Spin model checker generates

an error trace caused by a broken temporal property.

This error trace can be simulated in Spin, illustrating

the steps that lead to the error. However, a simulation
is needed at the Java source code level, and this requires

a mapping from Spin error traces to corresponding Java

error traces. We don't have this mapping implemented

for the moment. Instead, the Java program is allowed

to contain calls of Verify. print (...) statements that

will cause printing on graphical message sequence charts

when running the error trace in Spin.

Correctness and Scalability

The translator itself is a prototype experimenting with

the idea of transforming a real programming language
into a model checker language. Since this is a novel and

challenging problem in itself we have not spent efforts

to prove the translation correct. Our main goal is to see

whether this approach can have practical importance.

The translator is expected to be scalable to ahnost full
Java 1.0.

A major challenge, however, is whether model check-

ing of the resulting target Promela program scales up
to large programs. A 1000 line Java program has been

analyzed using the tool, confirming the existence of a

deadlock [5]. In order to handle substantially larger pro-

grams one needs to apply transformations to the Java

source program in order to remove details that are not

important for the properties to be verified. Together
with Stanford University and Kansas State University

we are currently exploring techniques such as program

abstraction, program slicing, and static analysis in gen-

eral. Some of these techniques can be regarded as pro-

gram transformation schemes that produce target pro-

grams with a smaller state space than the source pro-

grams. The intention is to apply such transformations

on a Java program before the translation into Promela
is applied. In a current project, a 13 K line satellite file

communication protocol written in Java is being ana-

lyzed. This work will identify useful abstraction tech-

niques.

An alternative solution to deal with scalability is com-

positional model checking, where only smaller portions
of code are verified at a time, and where the results

are then composed to deduce the correctness of larger

portions of code. Imagine for example that one has pro-

grammed a Java class modeling a bounded buffer which
is to be used in a multi threaded context. We can then

analyze its correctness by "putting it in parallel" with
an aggressive environment consisting of producer and

consumer threads, and we can then analyze the proper-

ties of this small system. At least one of the errors in

the DEEP SPACE 1 operating system could have been

found this way.

A different issue is the treatment of dynamic object cre-

ation. Currently the heap is modeled as a fixed size

array. We are studying how to model a dynamic heap

and garbage collection in a model checker. Note that

no alias analysis is done at this point. It will, however,

play a role in optimizing the verification.

5 CONCLUSIONS

In this paper we have summarized a variety of trans-

formation systems developed at NASA Ames for the

purpose of automating aspects of software engineering.
Our transformation systems lower the cost of developing

software, lower the cost for maintaining software, lower

the expertise required to develop software, and provide

more effective ways to verify and validate software sys-
tems.

To achieve these goals, we employ a spectrum of trans-

formationaltechnology,rangingfrom transformation
systemsorganized_sa compiler to deductive synthe-

sis. The choice of t,ransformation technology depends

upon the characteristics of the source to target trans-

lation problem. When the translation problem can

be decomposed along the lines of syntactic constructs,

then syntax-directed source-to-source transformation

systems (non-optimizing compilers) are highly efficient

and relatively easy to control. For the first generation

of the Java PathFinder, this technology worked well;

enabling rapid experimentation of different ways to em-

bed Java syntactic constructs into Promela. When the

translation problem is characterized by a sequence of

intermediate forms, then a sequence of sets of trans-

formations (applied to exhaustion at each stage) works

well. As long as the number of transformations applied

at each stage is small, then issues such as termination

- i.e., a well defined ordering ensuring progress towards

the next intermediate form - are manageable, but re-

quire more expertise to control than compiler technol-

ogy. The interaction of the transformation rules requires

care to ensure correctness. Deductive synthesis technol-

ogy offers the potential to develop transformation sys-

tems not by defining 'how' constructs are transformed

from source to target, but rather the declarative rela-

tionship between source and target. For small domains,

the deduction engine will find the right path for trans-

forming from source to target by exploring the possibil-

ities denoted by the declarative relationship. However,

as the domain becomes larger, this exploration becomes

combinatorially prohibitive. This leads to the goal of

operationalizing a deductive synthesis system.

Despite the effectiveness of these systems, we perceive

barriers to the more wide-spread use of transformational

technology. To break through these barriers, the same

goals that apply to improving software development in

general also need to be achieved to improving the de-

velopment process for transformation systems: lower

the cost of developing a transformation system, lower

the cost to modify and extend a transformation system,
lower the expertise required to develop a transformation

system, and provide effective ways to verify and validate

transformation systems.

ACKNOWLEDGEMENTS

We would like to acknowledge the efforts of Phil Oh

who helped create a Java-based graphical interface to

Amphion, and Santos Lazzeri who created a text inter-

face to Amphion [8], and a graphical interface to Meta-

Amphion.

REFERENCES

atttomated synthesis _}f data analysis programs. Sub.
mitred to LICA [.99, 1999.

[3] K. Havelund, M. Lowry, and .I. Penix. Formal Analysis
of a Space Craft Controlh,r using SPIN. In Proc. 4th
SPIN workshop, 1998.

[4] K. Havelund and T. Pressburger. Model Checking Java
Programs using Java PathFinder. To appear in Intl. J.
Software Tools for Technology Transfer, February 1999.

[.5] K. Havehmd and J. Skakkebaek. Practical Application

of Model Checking in Software Verification, 1999. Sub-
mitted for publication.

[6] G. Holzmann. The Model Checker Spin. IEEE Trans.
on Software Engineering, 23(5):279-295, 1997.

[7] W. Howard. The formulas-as-types notion of construc-
tion. In J. P. Seldin and J. R. Hindley, (eds.), To
H. B. Curry: Essays on Combinatory Logic, Lambda-
Calculus, and Formalism, pp. 479-490. Academic Press,
1980.

[8] S. Lazzeri. A comparison of different HCI styles in a
KBSE system. In 10th Intl. IFIP WG 5._/5.3 Conf.
PROLAMAT 98, Trento, Italy, September 1998.

[9] M. Lowry, A. Philpot, T. Pressburger, and I. Under-
wood. A formal approach to domain-oriented software
design environments. In Proc. 9th Knowledge-Based
Software Engineering Conf., pp. 48-57, 1994.

[10] M. Lowry and J. Van Baalen. Meta-Amphion: Synthe-
sis of efficient domain-specific program synthesis sys-
tems. J. Automated Software Engineering, 4:199-241,
1997.

[11] Z. Manna and R. J. Waldinger. Fundamentals of De-

ductive Program Synthesis. IEEE Trans. Software En-
gineering, SE-18(8):674-704, 1992.

[12] R. M. Smullyan. First-Order Logic. Springer, 1968.

[13] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger,
and I. Underwood. Deductive composition of astronom-
ical software from subroutine libraries. In A. Bundy,
(ed.), Proc. 12th Intl. Conf. Automated Deduction,
LNAI 814, pp. 341-355. Springer, 1994.

[14] A. Thomas, D. J. Spiegelhalter, and W. R. Gilks.
BUGS: A program to perform Bayesian inference using
Gibbs sampling. In Bayesian Statistics 4, PP. 837-842.
Oxford University Press, 1992.

[15] J. Van Baalen and S. Roach. Using decision procedures
to build domain-specific deductive synthesis systems. In
LOPSTR'g8: Proe. of the 8th Intl. Workshop on Logic
Program Synthesis and Transformation, 1998.

[16] J. Van Baaien, P. Robinson, M. Lowry, and T. Press-
burger. Explaining synthesized software. In D. F. Red-
miles and B. Nuseibeh, (eds.), Proc. 13th Intl. Conf.
Automated Software Engineering, pp. 240-248, 1998.

[1] W. Buntine. Operations for learning with graphical
models. J. AI Research, 2:159-225, 1994.

[2] W. Buntine, B. Fischer, and T. Pressburger. Towards

